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Abstract
We extend algorithmic information theory to quantum mechanics, taking a
universal semicomputable density matrix (‘universal probability’) as a starting
point, and define complexity (an operator) as its negative logarithm.

A number of properties of Kolmogorov complexity extend naturally to the
new domain. Approximately, a quantum state is simple if it is within a small
distance from a low-dimensional subspace of low Kolmogorov complexity.
The von Neumann entropy of a computable density matrix is within an additive
constant from the average complexity. Some of the theory of randomness
translates to the new domain.

We explore the relations of the new quantity to the quantum Kolmogorov
complexity defined by Vit́anyi (we show that the latter is sometimes as large
as 2n − 2 log n) and the qubit complexity defined by Berthiaume, Dam and
Laplante. The ‘cloning’ properties of our complexity measure are similar to
those of qubit complexity.

PACS numbers: 03.67.−a, 02.30.Tb, 02.60.Gf, 03.65.Ta, 89.70.+c

1. Introduction

Kolmogorov complexity (or by a more neutral name, description complexity) is an attractive
concept, helping to shed light onto such subtle concepts as information content, randomness
and inductive inference. Quantum information theory, a subject with its own conceptual
difficulties, is attracting currently more attention than ever before, due to the excitement
around quantum computing, quantum cryptography, and the many connections between these
areas. The new interest is also spurring efforts to extend the theory of description complexity
to the quantum setting; see [6, 1]. We continue these efforts in the hope that the correct notions
will be found at the convergence of approaches from different directions. This has been the
case for the theory of classical description complexity and randomness, What we expect from
these researches is an eventual deeper understanding of quantum information theory itself.
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One of the starting points from which it is possible to arrive at description complexity is
Levin’s concept of a universal semicomputable (semi)measure. We follow this approach in
the quantum setting, where probability measures are generalized into density matrices.

In contrast to the works [6, 1] we do not find the notion of a quantum computer essential
for this theory, even to the notions and results found in these works. The reason is that
limitations on computing time do not play a role in the main theory of description complexity,
and given enough time, a quantum computer can be simulated by a classical computer to any
desired degree of precision.

1.1. Notation

It seems that universal probability can also be defined in an infinite-dimensional space (it
should be simple to extend the notions to Fock space), but we will confine ourselves to finite-
dimensional spaces, in order to avoid issues of convergence and spectral representation for
infinite-dimensional operators. Let us fix for eachN a finite-dimensional Hilbert spaceHN ,
with acanonical orthonormal basis |β1〉, . . . , |βN〉. (We do not use a double index here, since
we can assume thatHN ⊂ HN+1 and the canonical basis ofHN is also the beginning of that
of HN+1.) Let Qn = ⊗n

i=1 Q1 be the Hilbert space ofn qubits. Let|0〉, |1〉 be some fixed
orthonormal basis ofQ1. Let Z

n
2 be the set of binary sequences of lengthn. If x ∈ Z

n
2 then

x = (x(1), x(2), . . . , x(n)), and we write

l(x) = n.
We denote, as usual, forx ∈ Z

n
2:

|x〉 =
n⊗
i=1

|x(i)〉.

We identifyQn with H2n , with the canonical basis element|βx〉 = |x〉.
If we writeψ or |ψ〉 for a state then the corresponding element of the dual space will be

written either asψ† or as〈ψ|. Accordingly, the inner product can be written in three ways as

〈φ|ψ〉 = 〈φ,ψ〉 = φ†ψ.
As usual, we will sometimes write

|φ〉 ⊗ |ψ〉 = |φ〉|ψ〉 = |φ,ψ〉.
The operation Tr denotes trace, and over a tensor product spaceHX ⊗ HY , the operation TrY
denotes partial trace.

As usual, for self-adjoint operatorsρ, σ , let us writeρ � σ if σ − ρ is nonnegative
definite.

Let us call a quantum state|ψ〉, with coefficients〈β i|ψ〉 that arealgebraic numbers,
elementary. The reason for going to coefficients that are algebraic numbers is that this
allows us the usual operations of linear algebra (orthogonalization, finding eigenvalues and
eigenvectors) while remaining in the realm of elementary objects.

Whenever we writeU(p) = |φ〉 for a Turing machineU, we mean thatU simply outputs
the (algebraic definitions of the) coefficients of the elementary state|φ〉. Similarly, let us call
a self-adjoint operatorT elementary if it is given by a matrix with rational entries.

We will also writeU(p) = |φ〉 if U(p) outputs a sequence of tuples (c1k, . . . ,cNk) for k = 1,
2, . . . , wherecik is an elementary approximation of〈β i|φ〉 to within 2−k. In this case, we say
that|φ〉 is acomputable quantum state with programp. We can talk similarly about a program
computing a linear operator on the finite-dimensional space, or even computing an infinite
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sequence|φ1〉, |φ2〉, . . . of states, in which case we output progressively better approximations
to more and more elements of the sequence.

Let
+
< denote inequality to within an additive constant, and

∗
< inequality to within a

multiplicative constant.
We assume that the reader knows the definition and simple properties of Kolmogorov

complexity, even the definition of its prefix-free versionK(x). For a reference, see [3].

1.2. Attempts to define a quantum Kolmogorov complexity

In [6], a notion of the description complexity of a quantum state was introduced. Though that
definition uses quantum Turing machines, this does not seem essential. Indeed, a quantum
Turing machine can simulate a classical one. And if there is no restriction on computing time
then any state output by a quantum Turing machine starting from|0 . . .0〉 can also be output
with arbitrary approximation by some ordinary Turing machine. We reproduce the definition
from [6] as follows. For|ψ〉 ∈ Hn, let

Kq(|ψ〉 | N) = min{l(p)− log |〈φ|ψ〉|2 : U(p,N) = |φ〉}.
So, the complexity of|ψ〉 is made up of the length of a program describing an approximation
|φ〉 to |ψ〉 and a term penalizing for bad approximation.

It is proved in [6] that for|ψ〉 ∈ Qn,

Kq(|ψ〉 | n) +
< 2n.

The lower bounds given in that paper are close ton. The following theorem will be proved in
section 7.

Theorem 1. For large enough n, there are states |ψ〉 ∈ Qn with Kq (|ψ〉 | n) > 2n− 2 logn.

An entirely different approach to quantum Kolmogorov complexity is used in [1], where
even the defining programs consist of qubits rather than ordinary bits. I will refer informally
to complexity defined in [1] as ‘qubit complexity’. Despite the difference in some of the goals
and basic definitions, still a number of results of that paper look somewhat similar to ours.

1.3. This paper

The definition of Kq reflects the view that quantum states should not be accorded the status of
individual outcomes of experiments,and therefore Kq strives only to approximate specification.
We go a little further, and approach quantum complexity using probability distributions to start
with. We find a universal semicomputable (semi-) density matrix (‘universal probability’) and
define a ‘complexity operator’ as its negative logarithm. Depending on the order of taking the
logarithm and the expectation, two possible complexities are introduced for a quantum state

|ψ〉: H
¯
(|ψ〉) +

< H̄(|ψ〉).
A number of properties of Kolmogorov complexity extend naturally to the new domain.

Approximately,a quantum state is simple if it is within a small distance from a low-dimensional
subspace of low Kolmogorov complexity. (Ideally, the three vague terms should play a role
in the following decreasing order of significance: dimension, complexity, closeness.) This
property can be used to relate our algorithmic entropy to both Vitányi’s complexity and
qubit complexity. We find thatH

¯
is within a constant factor of Vitányi’s complexity, that

H̄ essentially lowerbounds qubit complexity and upperbounds an oracle version of qubit
complexity.



6862 P Gács

Though Vit́anyi’s complexity is typically close to 2n, while qubit complexity is
+
<n,

these are differences only within a constant factor; on the other hand, occasionallyH
¯

can
be much smaller than̄H and thus Vit́anyi’s complexity is occasionally much smaller than
qubit complexity. This is due to the permissive way in which Vitányi’s complexity deals with
approximations.

The von Neumann entropy of a computable density matrix is within an additive constant
from the average complexity. Some of the theory of randomness translates to the new domain,
but new questions arise due to noncommutativity.

The results on the maximal complexity of clones are sharp, and similar to those in [1].

2. Universal probability

Let us call a nonnegative real functionf(x) defined on strings asemimeasure if
∑
x f (x) � 1,

and a measure (a probability distribution) if the sum is 1. A function is calledlower
semicomputable if there is a monotonically increasing sequencegn(x) of functions converging
to it such that(n, x) �→ gn(x) is a computable function mapping into rational numbers. It
is computable when it is both lower and upper semicomputable. (A lower semicomputable
measure is also computable.) The reason for introducing semicomputable semimeasures is
not that computable measures are not felt general enough; rather, this step is analogous to the
introduction of recursively enumerable sets and partial recursive functions. Just as there are
‘universal’ (or, ‘complete’ in terms of, say, many–one reduction) recursively enumerable sets
but no universal recursive sets, there is a universal semicomputable semimeasure in the sense
of the following proposition, even though there is no universal computable measure.

LetU be an optimal prefix Turing machine used in the definition ofK(x), and letz1, z2, . . .
be an infinite sequence. Then the quantityU(z) is well-defined: it is the output ofU whenz
is written on the input tape. LetZ1, Z2, . . . be an infinite coin-tossing 0–1 sequence, and let
us define

m′(x) = Prob[U(Z) = x]. (2.1)

Proposition 2.1 (Levin). There is a semicomputable semimeasure µ with the property that
for any other semicomputable semimeasure ν there is a constant cν > 0 such that for all x we
have cνν(x) � µ(x). Moreover, µ

∗= m′.

Proof sketch. We define a Turing machineT that will output a sequence (pt, xt, rt) wherert

is a positive rational number. At any timet, let rt(p, x) be defined as follows. If there is no
i � t for which some (p, x, ri) has been outputted thenrt(p, x) = 0; otherwise,rt(p, x) is the
maximum of thoseri. The machineT will have the following property for allp:∑

x

rt (p, x) � 1. (2.2)

To defineT, take a universal Turing machineV (p, x, n). Let T simulateV simultaneously on
all inputs. If at any stage of the simulation, someV (p, x, n) has been found, thenT checks
whether it can interpretV (p, x, n) as a positive rational numberr, and whether it can output
the triple (p, x, r) while keeping the condition (2.2). If yes, the triple is outputted, otherwise
it is not, and the simulation continues. Defineν(p, x) = limt rt(p, x). Then it is easy to check
thatµ(x) = ∑

p 2−p−1ν(p, x) satisfies the conditions of the proposition.

To showµ
∗= m′, note that the random variable whose distribution isµ can be represented

as a function of the coin-tossing infinite sequence. It is not difficult to check that the function
in question now can be implemented by a prefix Turing machine. �
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We will call any semicomputable semimeasureµ with the property in the proposition
‘universal’. Any two universal semimeasures dominate each other within a multiplicative
constant. We fix one such measure and denote it by

m(x)

and call it theuniversal probability. Its significance for complexity theory can be estimated by
by the following theorem, deriving the prefix complexityK(x) from the universal probability.

Proposition 2.2 (Levin’s coding theorem). We haveK(x) = − logm(x).

The lower bound− logm(x)
+
< K(x) comes easily from the fact thatK(x) is upper

semicomputable and satisfies the ‘Kraft inequality’
∑
x 2−K(x) � 1. For the proof of the

upper bound, see [3].
The above concepts and results can be generalized to the case when we have an extra

parameter in the condition: we will therefore talk aboutm(x | N), the universal probability
conditional to N, a function maximal within a multiplicative constant among all lower
semicomputable functionsf(x, N) which also satisfy the condition

∑
x f (x,N) � 1. The

coding theorem generalizes to 2−K(x|N) ∗= m(x | N).
Constructive objects other than integers or strings can be encoded into integers in some

canonical way. Elementary quantum states|ψ〉 ∈ HN also correspond to integers, and this is
how we understand the expression

m(|ψ〉 | N)
which is therefore nonzero only for elementary states|ψ〉. (This is not our definition of
quantum universal probability or complexity, only a tool from classical complexity theory
helpful in its discussion.)

The quantum analog of a probability distribution is a density matrix, a self-adjoint positive
semidefinite operator with trace 1. Just as with universal probability, let us allow operators
with trace less than 1, and call themsemi-density matrices. We call a sequenceAN of
operators, whereAN is defined overHN , lower semicomputable if there is a double sequence
of elementary operatorsANk with the property that for eachN, the sequenceANk is increasing
and converges toAN .

Lemma 2.3. (1) A computable sequence of operators is also lower semicomputable.
(2) IfAN is nonnegative then the elements of the sequenceANk can be chosen nonnegative.

Proof. Both these statements are proved via standard approximations. �
From now on, we suppress the indexN whenever it is not necessary to point out its

presence for clarity.

Theorem 2. There is a lower semicomputable semi-density matrix µ dominating all other
such matrices in the sense that for every other such matrix σ there is a constant cσ > 0 with
cσσ � µ. We have µ

∗= µ′ where

µ′ =
∑
|ψ〉

m(|ψ〉)|ψ〉〈ψ|. (2.3)

Also

µ
∗=

∑
ν

m(ν)ν ∗=
∑
P

m(P )P/ dimP

where ν runs through all elementary semi-density matrices and P runs through all elementary
projections.
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Proof. The proof of the existence ofµ is completely analogous to the proof of proposition
2.1.

To proveµ
∗= µ′, note first that the form of its definition guarantees thatµ′ is a lower

semicomputable semi-density, and thereforeµ′ ∗
< µ. It remains to proveµ

∗
< µ′. Sinceµ

is lower semicomputable, there is a nondecreasing sequenceµk of elementary semi-density
matrices such thatµ = limk µk, with µ0 = 0. Fork � 1, let δk = µk − µk−1. Each of the
nonnegative self-adjoint operatorsδk can be represented as a sum

δk =
n∑
i=1

pki |φki〉〈φki |.

Thus,µ = ∑
ki pki |φki〉〈φki |, with a computable sequencepki � 0, where

∑
k,i pki < 1. The

vectors|φki〉 and the valuespnk can be chosen elementary. Notingpki
∗
< m(k, i)

∗
< m(|φki〉)

finishes the proof.
The statement of sum representations using projections and elementary density matrices

is weaker than the statement aboutµ′. �

We will call µ thequantum universal (semi-)density matrix. Thus, the quantum universal
probability of a quantum state|ψ〉 is given by

〈ψ|µ|ψ〉.
A representation analogous to (2.1) holds also for the quantum universal probabilityµ. It is not
necessary to introduce a quantum Turing machine in place of a classical Turing machine, since
instead of outputting an elementary quantum state|ψ〉, we can just output the probabilities
themselves, leaving the preparation of the state itself to whatever device we want, which
might as well be a quantum Turing machine. The output ofU(Z) classically is a probability
distribution over the set of strings: stringx comes out with probabilitym(x). When the outputs
are quantum states|φ〉 with probabilitym(|φ〉), then the relevant output is not the distribution
|φ〉 �→ m(|φ〉): by far not all this information is available. The actual physical output is just
the density matrixµ′ as given in (2.3). Thus, we take the projection associated with each
possible output|φ〉, multiply it by its probability and add up all these terms. Indeed, assume
thatA is any self-adjoint operator expressing some property. The expected value ofA over
U(Z) is given by TrAµ′. In particular, suppose that for some quantum state|ψ〉 we measure
whetherU(Z) = |ψ〉. The measurement will give a ‘yes’ answer with probability∑

|φ〉
m(|φ〉)|〈φ|ψ〉|2 =

∑
|φ〉

m(|φ〉)〈ψ|(|φ〉〈φ|)|ψ〉

= 〈ψ|µ′|ψ〉 = Tr |ψ〉〈ψ|µ′.

These analogies suggest to us to define complexity also as a self-adjoint operator:

κ = − logµ. (2.4)

Proposition 2.4. The operator function A �→ logA is monotonic.

Proof. See [2]. �

This implies the upper semicomputability of− logµ. It is fortunate that we have this
theorem since for exampleA �→ eA is not monotonic (see the same references). We will also
use the following theorem, which could be called the ‘quantum Jensen inequality’:
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Proposition 2.5. If f (x) is a convex function in an interval [a, b] containing the eigenvalues
of operator A then for all |ψ〉 we have

f (〈ψ|A|ψ〉) � 〈ψ|f (A)|ψ〉. (2.5)

Proof. Easy, see [7]. �
This implies:

Lemma 2.6. Let f be a function concave in the interval [a, b], and |ψ〉 a vector. Then
the function A �→ 〈ψ|f (A)|ψ〉 is concave for self-adjoint operators A whose spectrum is
contained in [a, b].

We have now two alternative definitions for quantumcomplexity of a pure state, depending
on the order of taking the logarithm and taking the expectation:

H
¯
(|ψ〉) = − log〈ψ|µ|ψ〉 (2.6)

H̄ (|ψ〉) = −〈ψ|(logµ)|ψ〉 = 〈ψ|κ |ψ〉. (2.7)

We have:

Theorem 3. H
¯
(|ψ〉) � H̄ (|ψ〉).

Proof. Use equation (2.5). �
The difference between the two quantities can be very large, as shown by the following

example.

Example 2.7. Let |1〉, . . . , |N〉 be the eigenvectors ofµ ordered by decreasing eigenvaluespi.
Thenp1

∗= 1 andpN
∗= N−1. For vector|ψ〉 = 2−1/2(|1〉 + |N〉) we have

H
¯
(|ψ〉) = − log〈ψ|µ|ψ〉 = − log(p1/2 +pN/2)

+= 0

H̄ (|ψ〉) = 〈ψ|κ |ψ〉 = (− logp1 − logpN)/2
+= (logN)/2.

Which one of the two definitions is more appropriate? We preferH̄ since we like the idea
of a complexity operator; however, in the present paper, we try to study both.

The complexity Kq introduced in [6] can be viewed as the formula resulting fromH
¯
(|ψ〉)

when the sum in (2.3) is replaced with supremum. In classical algorithmic information theory,
the result does not change by more than a multiplicative constant after replacement, but
theorem 1 shows that it does in the quantum case.

Remark 2.8. It seems natural to generalizēH(|ψ〉) andH
¯
(|ψ〉) to density matricesρ by

H̄ (ρ) = Tr κρ H
¯
(ρ) = − log Trµρ

but we do not explore this path in the present paper, and are not even sure that this is the right
generalization.

3. Properties of algorithmic entropy

3.1. Relation to classical description complexity

It was one of the major attractions of the original Kolmogorov complexity that it could be
defined without reference to probability and then it could be used to characterize randomness.
Unfortunately, we do not have any characterization, even to good approximation, ofH̄ (|ψ〉)
or H

¯
(|ψ〉) in terms avoiding probability. As a generalization of classical complexity, it has the

properties of classical complexity in the original domain, just as Kq and qubit complexity.
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Theorem 4. Let |1〉, |2〉, . . . be a computable orthogonal sequence of states. Then forH = H̄
or H

¯
, we have

H(|i〉) += K(i), (3.1)

where the constant in
+= depends on the definition of the sequence.

Proof. The functionf (i) = 〈i|µ|i〉 is lower semicomputable with
∑
i f (i) � 1, hence it is

dominated bym(i). This showsK(i)
+
< H

¯
(|i〉).

On the other hand, the semi-density matrixρ = ∑
i m(i)|i〉〈i| is lower semicomputable,

soρ
∗
< µ, −logρ

+
> κ , hence

K(i) = 〈i|(−logρ)|i〉 +
> 〈i|κ |i〉 = H̄ (|i〉). �

3.2. Upper and lower bounds in terms of small simple subspaces

The simple upper bound follows immediately from the domination property of universal
probability.

Theorem 5. Assume that |ψ〉 ∈ HN . Then

κ
+
< (logN)1.

In particular, if |ψ〉 ∈ Qn then H̄ (|ψ〉) +
< n.

Proof. Let ρ = N−11, thenρ
∗
< µ, henceκ

+
< (logN)1. �

Remark 3.1. N is an implicit parameter here, so it is more correct to writeκ(· | N) +
<(logN)1.

We do not have any general definition of quantum conditional complexity (just as no generally
accepted notion of quantum conditional entropy is known), but conditioning on a classical
parameter is not problematic.

There is a more general theorem for classical complexity. For a finite setA letK(A) be
the length of the shortest program needed to enumerate the elements ofA. Then for allx ∈ A
we have

K(x)
+
< K(A) + log #A + 2 log #A.

What may correspond to a simple finite setA is a projectorP that is lower semicomputable
as a nonnegative operator. What corresponds to #A is the dimension TrP of the subspace to
which P projects. What corresponds tox ∈ A is measuring the angle between|ψ〉 and the
space to whichP projects.
Theorem 6 (upper bounds). Let P be a lower semicomputable projection withd = TrP .
We have

H
¯
(|ψ〉) +

< K(P) + logd − log〈ψ|P |ψ〉 (3.2)

H̄ (|ψ〉) +
< K(P) + logd + (1 − 〈ψ|P |ψ〉) logN. (3.3)

Proof. Let ρ be the semi-density matrix

1

2

(
P

d
+

1 − P
N

)
= 1

2

(
1
N

+ P

(
1

d
− 1

N

))
.
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From the first form, it can be seen that it is semi-density, from the second form, it can be seen
that it is lower semicomputable. By theorem 2, we have 2K(ρ)ρ

∗
< µ. SinceK(ρ)

+=K(P),
we have

H
¯
(|ψ〉) = − log〈ψ|µ|ψ〉 +

< K(P) + log〈ψ|(P/d)|ψ〉
+= K(P) + logd − log〈ψ|P |ψ〉.

On the other hand,

H̄ (|ψ〉) = 〈ψ|(− logµ)|ψ〉
+
< K(P) + 〈ψ|P |ψ〉 logd + (1 − 〈ψ|P |ψ〉) logN. �

This theorem points out again the difference betweenH
¯

andH̄ . If |ψ〉 has a small angle
with a small-dimensional subspace this makesH

¯
(|ψ〉) small. ForH̄ (|ψ〉), the size of the angle

gets multiplied by logN, so if nothing more is known about|ψ〉 then not only the dimension
of P counts but also the dimension of the whole space we are in.

Above, we defined what it means for a program to recursively ‘enumerate a subspace’ by
saying that it approximates the projector from below as a nonnegative operator: call this ‘weak
enumeration’. There is a simpler possible definition: let the program just list a sequence of
orthogonal vectors that generate the subspace: call this ‘strong enumeration’.

Remark 3.2. (1) The rest of the paper makes no use of the discussion of strong and weak
enumeration, so this part can be skipped.

(2) What is important is not only that the sequence of vectors in question can be enumerated,
since this is in some sense trivially true for any finite sequence of elementary vectors. A
recursively enumerable finite-dimensional subspace is always elementary. What matters
is that the enumeration is done with a short program (which can use the dimensionN
as input). Without this remark, there is clearly no difference between an elementary
subspace and a strongly enumerable one.

Proposition 3.3. The strong and weak kinds of enumeration of a subspace are equivalent. In
other words, there is a program of length k enumerating a subspace in the weak sense if and

only if there is a program of length
+= k enumerating it in the strong sense.

Proof. Given a strong enumeration|φ1〉, |φ2〉, . . . , the sum
∑
i |φi〉〈φi | clearly defines the

projector in a form from which the possiblity of approximating it from below is seen.
Assume now thatP is a projector andρ1 � ρ2 � · · · is a sequence of elementary

nonnegative operators approximating it.
Note that for a nonnegative operatorA, we have〈ψ|A|ψ〉 = 0 iff A|ψ〉 = 0. Now for

any of theρi, and any vector|ψ〉, if P|ψ〉 = 0 then〈ψ|P|ψ〉 = 0, which implies〈ψ|ρi |ψ〉 = 0
and thusρi|ψ〉 = 0. Hence the kernel ofρi contains the kernel ofP and hence the space of
eigenvectors ofρi with nonnegative eigenvalues is contained inPH. This shows that from
ρi, i = 1, 2,. . . , we will be able to build up a sequence|φ1〉, |φ2〉, . . . of orthogonal vectors
spanningPH. �

Theorem 7 below is analogous to the simple lower bound on classical description
complexity. That lower bound says that the number of objectsx with K(x) < k is at most 2k.
What corresponds here to ‘number of objects’ is dimension, and the statement is approximate:
if |ψ〉 has complexity<k then it is within a small angle from a certain fixed 2k+1-dimensional
space. The angle is really small for̄H ; it is not so small forH

¯
but it is still small enough that

the whole domain within that angle makes up only a small portion of the Hilbert space.
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Let |u1〉, |u2〉, . . . be the sequence of eigenvectors ofµ with eigenvaluesµ1 � µ2 � · · ·.
(Since our space is finite-dimensional, the sequence exists.) Letκ i = −log µi. Let Ek be the
projector to the subspace generated by|u1〉, . . . ,|uk〉.
Remark 3.4. The universal density matrixµ is an object with an impressive invariance
property: for any other universal density matrixν we haveν

∗= µ. On the other hand, the
individual eigenvectors|ui〉 probably do not have any invariant significance. It is currently
not clear whether even the projectorsEk enjoy any approximate invariance property.

Theorem 7 (lower bounds). Let |ψ〉 be any vector and let λ > 1. If H̄ (|ψ〉) < k then we
have

〈ψ|E2λk |ψ〉 > 1 − 1/λ. (3.4)

If H
¯
(|ψ〉) < k then we have

〈ψ|Eλ2k |ψ〉 > 2−k(1 − 1/λ). (3.5)

Proof. AssumeH̄ (|ψ〉) < k. Expand|ψ〉 in the basis{|ui〉} as |ψ〉 = ∑
i ci |ui〉. By the

assumption, we have
∑
i κi |ci |2 < k. Let m be the firsti with κ i> λk. Since

∑
i 2

−κi < 1 we
havem � 2λk. Also,

λk
∑
i�m

|ci |2 <
∑
i�m

κi |ci |2 < k

and hence
∑
i�m |ci |2 < 1/λ, which proves (3.4).

Now assumeH
¯
(|ψ〉) < k. We have

∑
i µi |ci |2 � 2−k. Let m be the firsti with µi <

2−k/λ. Since
∑
i µi < 1 we havem � 2kλ. Also,∑
i�m

µi |ci |2 < 2−k/λ
∑
i

|ci |2 = 2−k/λ

and hence

〈ψ|Em|ψ〉 =
∑
i<m

|ci |2 >
∑
i<m

µi |ci |2 � 2−k −
∑
i�m

µi |ci |2

> 2−k(1 − 1/λ). (3.6)

�
The defect of this theorem is that the operatorsEk are uncomputable. I do not know

whether the above properties can be claimed for some lower semicomputable operatorsFk.

3.3. Quantum description complexities

3.3.1. Vitányi’s complexity. Theorem 8 says that the complexity Kq from [6] (defined in
section 1), is not too much larger thanH , so we do not lose too much in replacing the sum
(2.3) with a supremum: if the sum is>2−k then the supremum is>2−4k/k2.

Theorem 8 (relation to Kq).

H
¯

+
< Kq

+
< 4H

¯
+ 2 logH

¯
. (3.7)

Proof. We start from the end of the proof of theorem 7. We use (3.6) withλ = 2, and note
that one term, say,|cr|2 of the sum

∑
i�m |ci |2 must be at least 2−2k−2. We would be done
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if we could upperboundK(|ur〉) appropriately. It would seem thatK(|ur〉) can be bounded
approximately byk sincem � 2k+1. But unfortunately, neither the vectors|ui〉 nor their
sequence are computable; so, an approximation is needed. Letr be the largest binary number
of length�k smaller than Trµ. Then there is a programp of length�k + 2 logk computing
a lower approximation̂µ of µ such that Trµ − Tr µ̂ � 2−k. Indeed, letp specify the binary
digits of r and then compute an approximation of Trµ that exceedsr.

The condition〈ψ|µ|ψ〉 � 2−k implies 〈ψ|µ̂|ψ〉 � 2−k+1. We can now proceed witĥµ
as withµ. We compute eigenvectors|ûi〉 for µ̂, and find an elementary vector|ûr〉 with

K(|ûr〉) +
< 2k + 2 logk |〈ψ|ûr 〉|2 ∗

> 2−2k.

The extrak + 2 logk in K(|ûr〉) is coming from the programp above. �

3.3.2. Qubit complexity. Let us define the qubit complexity introduced in [1]. We refer
to that paper for further references on quantum Turing machines and detailed specifications
of the quantum Turing machine used. Our machine starts from an input (on the input tape)
consisting of a qubit program and a rational numberε > 0. On the output tape, an output
appears, preceded by a 0/1 symbol telling whether the machine is considered halted. The
halting symbol as well as the content of the output tape does not change after the halting
symbol turns 1. (The input tape, which is also the work tape, keeps changing.) We can assume
that input and output strings of different lengths can always be padded to the same length at
the end by 0’s, or if this is inconvenient, by some special ‘blank’, or ‘vacuum’ symbol. The
input of the machine is a density matrixρ. For any segment of some lengthn of the output,
and any given timet there is a completely positive operator/k,t such that then symbols of
the output at timet are described by a density matrixσ = /k,tρ. We only want to consider
the output state when the machine halted. IfH is a projection to the set of those states then the
semi-density matrixH σ H is the output we are interested in. The operation0n,t : ρ �→ HσH

is a completely positive operator but it is not trace-preserving; it may decrease the trace. It is
also monotonically increasing int.

For a state|ψ〉, let QCε(|ψ〉) be the lengthk of the smallest qubit program (an arbitrary
state inQk, or more precisely the density matrix corresponding to this pure state) which, when
given as input along withε, results in an output density matrixσ with 〈ψ|σ |ψ〉 � 1 − ε.
The paper [1] shows that this quantity has the same machine-independence properties as
Kolmogorov complexity, so we also assume that a suitable universal quantum Turing machine
has been fixed. For the following theorem 9, we will compute complexities of strings in
HN = Qn, soN = 2n.

Lemma 3.5. If for a semi-density matrix ρ and a state |ψ〉 we have 〈ψ|ρ|ψ〉 � 1 − ε and ρ
has the eigenvalue decomposition

∑
i pi |i〉〈i| where p1 � p2 � · · ·, then

p1 � 1 − ε, |〈1|ψ〉|2 � 1 − 2ε.

Proof. Let ci = 〈i|ψ〉, then〈ψ|ρ|ψ〉 = ∑
i pi |c2

i | � 1 − ε. Hencep1 � 1 − ε, therefore

|c1|2 + ε �
∑
i

pi
∣∣c2
i

∣∣ � 1 − ε

giving |c2
1| � 1 − 2ε. �

Theorem 9. For ε < 0.5, if QCε(|ψ〉) � k then

H̄ (|ψ〉) +
< k +K(k) + 2εn.
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Proof. For eachk, let Ik be the projection to the spaceQk of k-length inputs. The operator

λ =
∑
k

m(k)2−kIk

is a semicomputable semi-density matrix on the set of all inputs. For each timet, the semi-
density matrix0n,t λ is semicomputable. As it is increasing int, the limit ν = limt 0n,t λ is

a semicomputable semi-density matrix, and thereforeν
∗
< µ. Let |φ〉 ∈ Qk, then|φ〉〈φ| � Ik,

hencem(k)2−k|φ〉〈φ| � λ, hence for eacht we have

m(k)2−k0t,k|ψ〉〈ψ| � ν ∗
< µ.

Since also 2−nIn
∗
< µ, we can assert, withρt,k = 0 t,k |φ〉〈φ|, that

σ = m(k)2−kρt,k + 2−nIn
∗
< µ.

Assume that〈ψ|ρt,k |ψ〉 � 1−ε. Then by lemma 3.5, ifρt,k has the eigenvalue decomposition∑
i pi |i〉〈i| thenp1 � 1 − ε and|〈1|ψ〉|2 � 1 − 2ε. The matrix (−log σ ) can be written as

−
∑
i

log(m(k)2−kpi + 2−n)|i〉〈i|.

Hence, withci = 〈i|ψ〉, and using lemma 3.5 andε > 0.5

−〈ψ| logµ|ψ〉 +
< −〈ψ| logσ |ψ〉
=

∑
i

log
(
m(k)2−kpi + 2−n)|ci |2

� k +K(k) + log(1 − ε) + 2εn.

In the last inequality, the first two terms come from the first term of the previous sum, while
2εn comes from the rest of the terms. �

Using the definitions of [1], we write QC(|ψ〉) � k if there is a|φ〉 such that for allε of
the form 1/m, when|φ〉 is given as input along withε, we get an output density matrixσ with
〈ψ|σ |ψ〉 � 1 − ε. The above theorem implies that in this case,

H̄ (|ψ〉) +
< k +K(k). (3.8)

Let x be a bit string, then we know from (3.1) that

H̄ (|x〉) += K(x). (3.9)

It has been shown in [1] that QC(|x〉) +
< C(x) whereC(x) is the (not prefix-free) Kolmogorov

complexity. We can show directly that alsoC(x)
+
<QC(|x〉), but we will not do it in this paper.

It follows from (3.8) and (3.9) thatK(x)
+= H̄ (|x〉) +

<QC(|x〉)+K(QC(|x〉)). This is in some
way stronger, since another interesting quantity,H̄ (|x〉), is interpolated, and in another way it
seems slightly weaker. But only very slightly, since one can boundK(x) by C(x) in general
only viaK(x)

+
< C(x) +K(C(x)).

Just as we obtained an upper bound on Kq using (3.5) combined with an approximation
of the uncomputableµ, we may hope to obtain an upper bound on QC using (3.4) combined
with a suitable approximation of the uncomputableµ or − logµ. But we did not find an
approximation in this case for a reasonable cost in complexity: the best we can say replaces
H̄ (|ψ〉) with 〈ψ|(−log µ)|ψ〉 for any computable density matrixµ. Or, we can upperbound
not QC(|ψ〉) but QC(|ψ〉 | χ) whereχ is an encoding of the halting problem into a suitable
infinite binary string. The concept of an oracle quantum computation with a read-only classical
oracle tape presents no difficulties.
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Theorem 10. For each rational ε and for any computable density matrix µ we have

QCε(|ψ〉) +
< 〈ψ|(− logµ)|ψ〉/ε +K(µ).

Similarly,

QCε(|ψ〉 | χ) +
< H̄(|ψ〉)/ε.

Proof. For the second inequality, we can use (3.4) withk = H̄ (|ψ〉) andλ = 1/ε. The oracle
χ allows us to compute the spaceE2λk with arbitrary precision. Then our quantum Turing
machine can simply map the space ofλk-length qubit strings into the (approximate)E2λk .

Similarly, for the first inequality, ifµ is computable then we can compute the subspaces
corresponding toE2λk with arbitrary precision. �

3.4. Invariance under computable transformations

Theorem 11. Let U be any computable unitary transformation. Then we have

H̄ (U |ψ〉) += H̄ (|ψ〉), H
¯
(U |ψ〉) += H

¯
(|ψ〉).

Proof. Straightforward. �

This theorem needs to be generalized: it should be understood how complexity changes
under a completely positive operator.

4. Complexity and entropy

In classical algorithmic information theory, ifρ is a discrete computable probability distribution
then its entropy is equal, to a good approximation, to the average complexity. In the quantum
case, entropy is defined as

S(ρ) = −Tr ρ logρ.

There is a quantity corresponding to the Kullback information distance, and calledrelative
entropy in [7]: it is defined as

S(ρ‖σ) = Tr ρ(logρ − logσ)

whereρ andσ are density matrices.

Proposition 4.1.

S(ρ‖σ) � 0. (4.1)

Proof. See [7]. �

The following theorem can be interpreted as saying that entropy is equal to average
complexity:

Theorem 12. For any lower semicomputable semi-density matrix ρ we have

S(ρ)
+= Tr ρκ (4.2)
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Proof. Let5 = Tr µ, thenσ = µ/5 is a density matrix, and hence by (4.1),S(ρ‖σ) � 0. It

follows thatS(ρ)
+
< Tr ρκ .

On the other hand, sinceρ
∗
< µ, the monotonicity of a logarithm givesκ

+
<−logρ which

gives the other inequality. �
For what follows the following property of a logarithm is useful:

Lemma 4.2. If A and B are nonnegative operators over X and Y respectively, then

logA⊗ B = (logA)⊗ 1Y + 1X ⊗ (logB). (4.3)

Proof. Direct computation. �
Some properties of complexity that can be deduced from its universal probability

formulation will carry over to the quantum form. As an example, take subadditivity:

K(x, y)
+
< K(x) +K(y).

What corresponds to this in the quantum formulation is the following:

Theorem 13 (subadditivity). We have

µX ⊗ µY
∗
< µXY . (4.4)

For |φ〉, |ψ〉 ∈ HN and H = H̄ or H
¯

we have

H(|φ〉|ψ〉) +
< H(|φ〉) +H(|ψ〉). (4.5)

Proof. The density matrixµX ⊗ µY over the spaceHXY = HX ⊗ HY is lower
semicomputable, therefore (4.4) follows. Hence

(〈φ|µX|φ〉)(〈ψ|µY |ψ〉) = 〈φ|〈ψ|(µX ⊗ µY )|φ〉|ψ〉
∗
< 〈φ|〈ψ|µXY |φ〉|ψ〉.

which gives (4.5) forH = H
¯

. ForH = H̄ note that by the monotonicity of logarithms,
identities (4.3) and (4.4) imply

(logµX)⊗ 1Y + 1X ⊗ (logµY ) = logµX ⊗ µY
+
< logµXY .

Taking the expectation (multiplying by〈ψ| on the left and|ψ〉 on the right) gives the desired
result. �

The analogous subadditivity property also holds for the quantum entropyS(ρ).

For classical complexity we haveK(x)
+
< K(x, y), and the corresponding property also

holds for classical entropy. This monotonicity property can also be proved for quantum
complexity.
Theorem 14 (monoticity). We have

TrYµXY
∗= µX (4.6)

κXY
+
> κX ⊗ 1Y . (4.7)

For |φ〉, |ψ〉 ∈ HN , and H = H̄ or H
¯

we have

H(|φ〉) +
< H(|φ〉|ψ〉). (4.8)

Proof. Let ρX = TrYµXY . ThenρX is a semicomputable semi-density matrix overHX and

thusρX
∗
< µX. At the same time, for any fixed vector|ψ〉, the matrixσXY = µX ⊗ |ψ〉〈ψ|
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is a lower semicomputable semi-density matrix, henceµXY
∗
> σXY . Taking the partial trace

gives

µX = TrY σXY
∗
< TrYµXY = ρX.

This proves (4.6), which implies the inequality forH
¯

.
Let {|ψi〉} be any orthogonal basis ofHY with |ψ1〉 = |ψ〉. Then we have

〈φ|〈ψ|µX ⊗ 1Y |φ〉|ψ〉 = 〈φ|µX|φ〉
∗= 〈φ|TrYµXY |φ〉
=

∑
i

〈φ|〈ψi |µXY |φ〉|ψi〉

� 〈φ|〈ψ|µXY |φ〉|ψ〉
which provesµX ⊗ 1Y

∗
> µXY . Taking logarithms and noting that log1Y = 0, we get (4.7)

which proves the inequality for̄H . �

The quantum entropy analog of this monotonicity fails in a spectacular way. It is not true
in general thatS(ρX) � S (ρXY). Indeed,ρXY could be the density matrix of a pure state, and
thenS(ρXY) = 0. At the same time, if this pure state is an entangled state, a state that cannot be
represented in the form of|φ〉|ψ〉, only as the linear combination of such states, thenS(ρX)> 0.
This paradox does not contradict the possibility that entropy is ‘average complexity’. It
just reminds us that theorem 14 says nothing about entangled states. An entangled state
can be simple even if it is a big sum, but in this case it will contain a lot of complex
components.

5. The cloning problem

5.1. Maximal complexity of cloned states

For classical description complexity, the relation

K(x, x)
+= K(x)

holds and is to be expected: once we havex we can copy it and get the pair (x, x). But
there is a ‘no cloning theorem’ [4] in quantum mechanics saying that there is no physical way
to get |ψ〉|ψ〉 from |ψ〉. It is interesting to see that a much stronger form of this theorem
also holds, saying that sometimes̄H(|ψ〉|ψ〉) is much larger than̄H(|ψ〉) (of course, at most
twice as large). Moreover, we can determine the maximum complexity of states of the form
|ψ〉⊗k . Our results in this are very similar in form to those of [1], and the proof method is also
similar.

For |ψ〉 ∈ HN , let |ψ〉⊗m denote them-fold tensor product of|ψ〉 with itself, an element
of H⊗m.

Let

SN,m = H∨m ⊂ H⊗m
N

be the subspace of elements ofH⊗m
N invariant under the orthogonal transformations arising

from the permutations

|φ1〉 · · · |φm〉 �→ |φπ(1)〉 · · · |φπ(m)〉.
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Lemma 5.1 (see [8]).

(1) dimSN,m = (m+N−1
m

).
(2) SN,m is invariant under unitary transformations of the form U⊗m.
(3) If a density matrix over SN,m commutes with all such transformations then it is a multiple

of unity.

Let

C̄N,m = max
|ψ〉∈HN

H̄ (|ψ〉⊗m) (5.1)

and let C
¯N,m

be defined the same way withH
¯

in place ofH̄ .

Theorem 15. We have

C̄N,m
+
< K(m) + log

(
m +N − 1

m

)

C
¯N,m

� log

(
m +N − 1

m

)
.

Proof. The upper bound follows from the fact that|ψ〉 ∈ SN,m and from (3.3).
For simplicity, let us write for the moment,|ψ〉m = |ψ〉⊗m. For the lower bound, let us

first setc = C
¯N,m

. We have

Tr µ|ψ〉m〈ψ|m = 〈ψ|mµ|ψ〉m � 2−c (5.2)

for all states|ψ〉 ∈ HN . Let PS be the projection toSN,m. Let9 be the uniform distribution
on the unit sphere inHN . Then

ρ =
∫

|ψ〉m〈ψ|m d9

is a density matrix overSN,m. It commutes with all unitary transformations of the formU⊗m,
and therefore according to lemma 5.1,

ρ =
(
m +N − 1

m

)−1

PS.

Integrating (5.2) by d9 we get

2−c � Tr µρ =
(
m +N − 1

m

)−1

Tr µPS �
(
m +N − 1

m

)−1

.

Taking the negative logarithm, we get the lower bound onC
¯
. �

5.2. An algebraic consequence

This subsection says nothing new about quantum complexities, it only draws some technical
inferences from the previous subsection.

The problem of estimatinḡH(|ψ〉|ψ〉) can be reformulated into an algebraic problem
for which we are not aware of any previous solution. The results obtained above solve the
problem: perhaps such a solution will also have some independent interest. For anyN × N
matrixA, let

u(A) = ‖A†A‖
TrA†A

= max
i

αi∑
j αj
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whereαj are the eigenvalues ofA†A. The functionu(A) measures the ‘unevenness’ of the
distribution of eigenvalues ofA†A. It can vary between 1/N for A = 1 and 1 (whenA†A
has rank 1). For a subspaceF of the vector space of symmetric (not necessarily self-adjoint!)
matrices, letu(F ) = maxA∈F u(A). LetN ′ = N(N +1)/2. For 0< d < N ′, we are interested
in the quantity

u(c,N) = min{u(F ) : dimF � d}.
Theorem 16. We have u(c,N) � d/N ′.

Before the proof, we give some lemmas setting up the connection with cloning.

Remark 5.2. This theorem has been strengthened from its preprint version.

Lemma 5.3. Let A be a symmetric N × N matrix (aij ) and let

α =
∑
ij

a∗
ij |βi〉|βj 〉.

Then

sup
|ψ〉∈HN

|〈α|(|ψ〉|ψ〉)|2 = u(A). (5.3)

Proof. We can restrict ourselves to matricesA with Tr A†A = 〈α|α〉 = 1. Then with
|ψ〉 = |φ〉|φ〉, |φ〉 = ∑

i xi |βi〉,

|〈α|ψ〉|2 =
∣∣∣∣∣
∑
ij

aij xixj

∣∣∣∣∣
2

= |xT Ax|2

wherexT is the transpose ofx (without conjugation).
By singular value decomposition (see [2]), every matrix can be written in the formV DU

whereD is a nonnegativediagonal matrix andU,V are unitary transformations. If the elements
of D are all distinct, positive and in decreasing order thenU,V are unique. In this case, clearly
if A is symmetric thenV = UT . This can be generalized to the case when the elements of
D are not all positive and distinct, using for example limits. Thus,A = UT DU . This gives
xT Ax = xT UT DUx = (Ux)TD(Ux). As x runs through all possible vectors with∑
i |xi |2 = 1, so doesUx. Letd1be the largest element on the diagonal ofD, thend2

1 = ‖A†A‖.

|(Ux)TDUx| =
∣∣∣∣∣
∑
i

di(Ux)
2
i

∣∣∣∣∣ �
∑
i

di |(Ux)i |2 � d1

since
∑
i |(Ux)i |2 = 1. The maximum of|(Ux)TD(Ux)|2 is achieved by the element

x = U−1|β1〉, and then it isd2
1 = u(A). �

Recall the definition of̄CN,m from (5.1).

Lemma 5.3. For 0< d < N ′, there is a computable semi-density matrix ρ with

sup
|ψ〉=|φ〉|φ〉

− log〈ψ|ρ|ψ〉 � log(N ′ − d)− log(1 − u(d,N)).

Proof. Using the notation of lemma 5.3, letF be the subspace of dimensiond of vectors on
which the minimumu(c, N) is achieved. Then withP = 1 − F letρ be the semi-density matrix
defined in the proof of theorem 6. Similarly to (3.2), we have, for any|ψ〉 = |φ〉|φ〉:

− log〈ψ|ρ|ψ〉 � log(N ′ − d)− log(1 − 〈ψ|F |ψ〉).
H̄ (|ψ〉) +

< (2 − c) logN + logN2(〈ψ|F |ψ〉).
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Note that〈ψ|F |ψ〉 = |〈α|ψ〉|2 for someα ∈ F , hence by (5.3) we have〈ψ|F |ψ〉 � u, hence
the last term of the right-hand side is−log(1 − u). �

Proof of theorem 16. The reasoning of theorem 15 implies that logN ′ lower bounds the
left-hand side in the above lemma. �

6. Randomness tests

6.1. Universal tests

In classical algorithmic information theory (see, for example, [3]), description complexity
helps clarify what experimental outcomes should be called random with respect to a
hypothetical probability distribution. If the set of possible outcomes is a discrete one, say the
set of natural numbers, then, given a probability distributionν, we call a lower semicomputable
functionf (x) a randomness test if

∑
x f (x)ν(x) � 1. It is known that there is a universal

testtν(x), a test that dominates all other tests to within a multiplicative constant. An outcome
is considered non-random with respect toν whentν(x) is large. In the case of a computable
distributionν, we have

tν(x)
∗= m(x)
ν(x)

(6.1)

where the multiplicative constant in the
∗= depends onν. (The general case is more

complicated.) The deficiency of randomness is defined asdν(x) = log tµ(x). In the case
of a computable distributionν it is known to be

dν(x)
+= − logν(x) + logm(x)

+= − logν(x)−K(x). (6.2)

Thus, for a computable distribution, the universal test measures the difference betwen the
logarithm of the probability and the complexity.

In the quantum setting, what corresponds to a probability distribution is a computable
density matrixρ. What corresponds to a function is a self-adjoint operator. So, let us say that
a randomness test is a lower semicomputable self-adjoint operatorFρ with

TrFρρ � 1.

Remark 6.1. In the theorem below, the expression

T ′ = ρ−1/2µρ−1/2

appears, which does not make sense ifρ is not invertible. However, let us writeσ =
µ1/2 ρ−1/2; this expression makes sense on the subspaceV orthogonal to the kernel ofρ,
and thereforeT ′ = σ †σ also makes sense there. Therefore we define〈ψ|T ′|ψ〉 as∞ for any
|ψ〉 /∈ V , and there is no problem for|ψ〉 ∈ V .

Theorem 19 (universal test). There is a test Tρ which is universal test in the sense that it

dominates each other test R: we have R
∗
< Tρ, where the multiplicative constant in

∗
< may

depend on R and ρ. We have Tρ
∗= T ′

ρ
∗= T ′′

ρ where

T ′
ρ =

∑
|φ〉

m(|φ〉)|φ〉〈φ|
〈φ|ρ|φ〉

T ′′
ρ = ρ−1/2µρ−1/2.
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Proof. The proof of the existence of a universal test is similar to the proof of proposition 2.1.
The proof ofT

∗= T ′ is similar to the one showingµ′ ∗= µ in theorem 2.
Let us proveT

∗= T ′′. To see thatT ′′ is lower semicomputable, note that as direct
computation shows, for any operatorC the functionA �→ C†AC is monotonic on the set of
self-adjoint operatorsA with respect to the relation�. By the cyclic property of the trace, we
also have TrT ′′ρ = Tr µ � 1. This provesT ′′ +

< T , it remains to prove thatT
∗
<T ′′. This is

equivalent to

ρ1/2Tρ1/2 � ρ1/2T ′′ρ1/2 = µ.

But the left-hand side is a lower semicomputable nonnegative definite matrix whose trace is
� 1, again due to the cyclic property of the trace. Therefore by the defining property ofµ, it

is
∗
< µ. �

The expression forT ′′
ρ is similar to (6.1), but it does not separate the roles of the density

matrixρ and of the universal probabilityµ as neatly, certainly not in the typical cases when
µ andρ do not commute. Assume that the eigenvalues ofρ arep1 � p2 � · · ·, with the
corresponding eigenvectors|vi〉 (these exist since our space is finite-dimensional). Let (mij) be
the matrix of the operatorµ when expressed in this basis. For a certain state|ψ〉 = ∑

i ci |vi〉,
we can express the value of the test on|ψ〉 as follows. If there is anyi with pi = 0 andci �= 0
then according to remark 6.1, the value is∞. Otherwise, it is

〈ψ|T ′′
ρ |ψ〉 =

∑
i,j

mij (pipj )
−1/2c∗i cj . (6.3)

The term(pipj )−1/2c∗i cj is defined to be 0 ifc∗i cj = 0, and we excluded the case when
pipj = 0 butc∗i cj �= 0. The roles ofµ andρ do not seem to be separable in the same way as
in the classical case. However, ifρ is the uniform distribution then the expression simplifies
to

N−1
N∑

i,j=1

mij c
∗
i cj = N−1〈ψ|µ|ψ〉

which is the classical comparison of the probability to the universal probability.

6.2. Relation to Martin–Löf tests

The sum forT ′
ρ in theorem 17 is similar toµ′ in theorem 2. In the classical case and with

a computableρ, just like there, it can be replaced with a supremum. In the quantum case it
cannot: indeed, the expression ofµ′ is a special case ofT ′, and we have shown in section 3
that the sum inµ′ cannot be replaced with a supremum. We do not know whether there is still
an approximate relation as in theorem 8: the proof does not carry over.

It is worth generalizing the sum forT ′
ρ as

∑
F

m(F )F
TrFρ

whereF runs through all elementary nonnegative self-adjoint operators. An interesting kind
of self-adjoint operator is a projectionP to some subspace. Such a term looks like

m(P )
TrPρ

P.

This term is analogous to a Martin–Löf test. An outcomex would be caught by a Martin–L̈of
test in the discrete classical case if it falls into some simple setS with small probability. The
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fact thatS is simple means thatK(S) is small; in other wordsm(S) is large. Altogether, we can
say thatx is caught if the expression

m(S)
ρ(S)

1S(x)

is large, where 1S (x) is the indicator function of the setS. In the quantum case, for state|ψ〉,
what corresponds to this is the expression

m(P )
Tr Pρ

〈ψ|P |ψ〉.

The probability ofS translates to TrPρ, and 1S (x) translates to〈ψ|P|ψ〉. Thus, a quantum
Martin–Löf test catches a state|ψ〉 if it is ‘not sufficiently orthogonal’ to some simple low-
probability subspace. Compare this with theorem 6.

As we see, the universal quantum randomness test contains the natural generalizations of
the classical randomness tests, but on account of the possible noncommutativity betweenρ

andµ, it may also test|ψ〉 in some new ways that do not correspond to anything classical. It
would be interesting to find what these ways are.

7. Proof of theorem 1

Let us denote

Km(|ψ〉) = min{l(p) : U(p) = |φ〉, − log |〈φ|ψ〉|2 � m}.
The first lemma lowerboundsK∞(|ψ〉), the later ones lowerboundKm(|ψ〉) for finite m.

Lemma 7.1. For each k there is a subspace V of Qn, of dimension 2n − 2k, with the property
that for all |ψ〉 ∈ V we have K∞(|ψ〉) � k.

Proof. Let p1, . . . , pr be all programs of length<k for whichU(pm) ∈ Qn. Thenr < 2k.
LetV be the set of elements ofQn orthogonal to all vectors of the formU(pi). �

Let bn denote the volume of the unit ball in ann-dimensional Euclidean space. Then for
the surface volumesn of this ball we have

bn−1 < sn = nbn. (7.1)

For an angleα, let sn(α) be the surface volume of a subset of the surface cut out by a cone of
half-angleα: for some vector|u〉, this is the set of all vectors|x〉 of unit length with〈u|x〉 �
cosα. Thus, we havesn = sn(π). We are interested in how fastsn(α) decreases fromsn/2 to
0 asα moves fromπ/2 to 0.

Lemma 7.2. Let α = π/2 − y. Then

sn(α)/sn
∗
< exp(−ny2/2 + lnn). (7.2)

Proof. We have, fork � 2:

sk(α) = sk−1

∫ α

0
sink−2 x dx � sk−1α sink−2α. (7.3)

So, we need to estimate
∫ α

0 sinn x dx. The method used (also called Laplace’s method), works
for any twice differentiable function with a single maximum. Letg(x) = ln sin x, then it can
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be checked thatg′(π/2) = 0, g′′(π/2) = −1, g′′′(x) > 0 for x < π/2. The Taylor expansion
aroundπ/2 gives, fory > 0:

g(π/2 − y) = −y2/2 − y3g′′′(π/2 − z)/6<− y2/2

where 0< z < y. Hence, since sinx is increasing, we have forx < π/2 − y,

sinn(x)<e−ny2/2.

On the other hand, by (7.1),sk � bk−1 = sk−1/(k − 1), showingsn−1< (n − 1) sn. Hence

sn(α)<
π

2
e−(n−2)y2/2sn−1<

(n− 1)π

2
e−(n−2)y2/2sn

∗
< sne−ny2/2+lnn. �

Lemma 7.3. In any Hilbert space H of dimension 2n (it may be a subspace of some Qr ), the
volume fraction of the set of unit vectors |ψ〉 in H with the property that Km(|ψ〉) < k is

∗
<exp(−2n−m + k ln 2 +n).

Proof. We viewQn as a 2n+1-dimensional Euclidean space. Assume− log |〈φ|ψ〉|2 � m. If
α is the angle between|φ〉 and|ψ〉 then this means

2−m/2 < |〈φ|ψ〉| = cosα = sin(π/2 − α) � π/2 − α
giving α < π/2 − 2−m/2 for a fixed|φ〉, the relative volume (with respect tos2n + 1) of the set
of vectors with− log |〈φ|ψ〉|2 � m is therefore by (7.2)

∗
<exp(−2n+12−m/2 +n) = exp(−2n−m + n).

Let p1, . . . , pr be all programs of length<k for whichU(pm) ∈ Qn. Thenr< 2k. The volume
of all vectors|ψ〉 that are close in the above sense to at least one of the vectorsU (pi) is thus

∗
<2k exp(−2n−m + n) = exp(−2n−m + k ln 2 +n). �

Proof of theorem 1. According to lemma 7.1, there is a subspaceV of Qn, of dimension 2n −
2n−1 = 2n − 1, with the property that for all|ψ〉 ∈ V , for all m we haveKm(|ψ〉) � n− 1. Let
m = n − 2 log n. We can apply lemma 7.3 to this subspaceV of dimension 2n−1, and obtain
that for a certain constantc, the volume fraction of vectors withKm (|ψ〉) < 2n is

� exp
(− 2(n−1)−(n−2 logn) + 2n ln 2 + (n− 1) + c

)
= exp(−n2/2 +n(2 ln 2 + 1) + c − 1).

If n is large this is smaller than 1, so there are states|ψ〉 with K∞(|ψ〉) � n − 1 and
Kn−2 logn(|ψ〉) >2n. For these, clearly

Kq(|ψ〉) � (n− 1) + (n− 2 logn + 1) = 2n− 2 logn. �

8. Conclusions

We have advanced a new proposal to extend the theory of descriptional complexity to the
quantum setting. The approach starting from the universal density matrix appears to be
fruitful and leads to some attractive relations. However, the theory is still very incomplete.
The following tasks seem to be the most urgent.
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(1) Strengthen theorem 10 in a way that the smallness ofH̄ (|ψ〉) allows a direct inference
on the smallness ofQC(|ψ〉) (or find a counterexample). For this, it seems to us that
the behavior of a monotonically increasing sequence of density functions needs to be
understood better: namely, whether some approximate monotonicity can be stated about
the subspacesEk. Even if such a monotonicity is found, even if theorem 10 can be proved
for µ instead of just computable density matrices, the result is too weak. To strengthen
it, probably the theory of indeterminate-length quantum codes (the quantum analog of
variable-length codes) will be needed, as developed in [5].

(2) Find the proper generalization to the quantum setting of the classical theorem saying
that information cannot increase under the effect of any probabilistic computable
transformation.

(3) What kind of addition theorems can be expected for quantum description complexity?
The question is unsolved even for the von Neumann entropy. Also, the translation between
the results on quantum description complexity and those on the von Neumann entropy

will not be straightforward. As we remarked, the relation̄H(|φ〉|ψ〉) +
> H̄(|φ〉) holds

while S(ρX) � S(ρXY ) does not. Still, maybe the study of the problem for quantum
description complexity helps with the understanding of the problem for von Neumann
entropy, and its relation to coding tasks of quantum information theory.

Despite all the caveats, let us ask the question (risking that somebody finds a trivial
answer): does̄H obey strong superadditivity?
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